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SUMMARY

A new artificial boundary condition for two-dimensional subsonic flows governed by the compressible
Navier–Stokes equations is derived. It is based on the hyperbolic part of the equations, according to the
way of propagation of the characteristic waves. A reference flow, as well as a convection velocity, is used
to properly discretize the terms corresponding to the entering waves. Numerical tests on various classical
model problems, whose solutions are known, and comparisons with other boundary conditions (BCs),
show the efficiency of the BC. Direct numerical simulations of more complex flows over a dihedral plate
are simulated, without creation of acoustic waves going back in the flow. Copyright © 2001 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

In open flow simulations, the fluid evolves in an infinite domain and thus the computing
domain must be obviously truncated. An artificial boundary � is then introduced, on which
appropriate artificial boundary conditions (BCs) have to be imposed. If the solution obtained
on a given truncated domain � is equal to the restriction of the infinite solution on the domain
�, then the artificial BC is perfect, and called transparent BC. Unfortunately, such a
configuration is only an ideal case. Abundant amounts of literature have dealt with this subject
for more than 20 years. We first propose in this introduction to quote some papers, focussing
on compressible, subsonic and viscous flows evolutions, governed by the unsteady compress-
ible Navier–Stokes equations.

On the one hand, a good BC should lead to a well-posed mathematical problem. Roughly
speaking, leading to a stable solution with respect to the initial datum. Following the work of
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Kreiss [1] for the purely hyperbolic systems, Strikwerda [2] established the number and the
kind of BCs to impose on an artificial frontier for incompletely parabolic systems in order to
ensure well-posedness. The proof relies on several simplifying hypothesis which allow work on
the linearized system with constant coefficients in the half space. With a Fourier–Laplace
transformation in space– time, an ordinary differential equation (ODE) is obtained. The
number of BCs to impose on a given artificial boundary is then equal to the solutions space
dimension of the previous ODE. Non-viscous BCs, coming from the hyperbolic part of the
equation, are distinguished from the viscous BCs, coming from the diffusive part, which have
to vanish when the diffusion terms do. This very technical approach is based on the
pseudo-differential operator’s theory, but Higdon [3] gives a more simple physical interpreta-
tion of it. By using an energy method on the linearized equations, Gustafsson and Sundstrom
[4] and Oliger and Sundstrom [5] propose a new BC for artificial boundaries. Dutt [6] works
on the non-linearized equations, but with the help of simplifying hypothesis. More recently,
Hesthaven and Gottlieb [7] derive an artificial BC to reach a mathematically well-posed
problem. In conclusion, if these artificial BCs are mathematically relevant, numerical results
are not always satisfying. For instance, Oliger and Sundstrom [5] prove that imposing the
pressure on a subsonic compressible outflow leads to a well-posed problem. Unfortunately,
such a crude BC gives rise to strong reflections in the flow when hydrodynamic disturbances
cross the boundary [8].

On the other hand, another way to define artificial BCs is the concept of non-reflecting BCs,
which inhibit the reflection of disturbances on the boundary. They are deduced from the
compressible Euler equations, considered as a first approximation of the compressible Navier–
Stokes equations. In the work of Hedstrom [9] and Thompson [10], the principle is to cancel
the wave entering the computational domain. Rudy and Strikwerda [8] adapt the work of
Hedstrom [9] and Enquist and Majda [11] to the compressible Navier–Stokes equations, and
improve it to find a partially non-reflecting BC. In fact, they give a way to specify the static
pressure through a subsonic outflow, which is physically determined by the outside of the
computational domain. Other methods exist to specify artificial BCs based on physical
arguments, for example, the radiative BC of Bayliss and Turkel [12] at a subsonic but
stationary outflow. More recently, another artificial BC for the compressible Navier–Stokes
equation has been developed by Tourette [13,14], following the work of Halpern [15,16].
Finally, Thompson [17] derived artificial BCs, like the force-free BC, when the non-reflecting
BC is not appropriate. This is the case when the ‘correct’ solution implicitly contains an
incoming wave, which must not be suppressed. This situation arises when the solution outside
the domain is changing in time and its behaviour has to be specified inside the domain through
the boundaries.

When the BCs needed for solving the problem are obtained, which are called here physical
BCs, it is necessary to adapt them to the numerical implementation and it is also necessary to
complete them with further BCs, called numerical BCs. These extra BCs are not required by
the physics of the problems, but only by the resolution algorithm that needs to have the value
of all the variables on the boundary. They have to be chosen in a good way. One of the
simplest ways is to use extrapolations [18], to deduce missing variables by using their values
inside the computational domain. Another possibility is to choose numerical BCs consistent
with the physical BCs [19–21].
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Nowadays, there are not yet artificial BCs for a subsonic compressible outflow which are
transparent for all configurations. We shall see that if some of them are successful with the
vorticity, they generate in return significant acoustic reflections [22,23]. These reflected
waves can sometimes be responsible for important changes in the behaviour of the flow
[24], and even lead to non-physical solutions [25]. To avoid such phenomena, another way
is to use a buffer zone, adjacent to the physical zone of interest, in which the solution
and/or the equations are gradually modified, so as to reduce disturbances at the outflow
boundary. A first type of problem found in the literature using this technique is the
boundary layer evolution simulation. For it, Street and Macaraeg [26] and Liu et al. [27]
for incompressible flows, and later Pruett et al. [28] for compressible flows use a parabo-
lization procedure. Wasistho et al. [29] bring the flow to a reference one, using a rather
crude method. A second type of problem is to make a vortex leaving the computational
domain with as little acoustic reflections as possible. Colonius et al. [23] stretch the mesh in
the flow direction and filter the solution, making the perturbations less and less resolved,
hoping that they will be nearly canceled before interacting with the outflow boundary. This
method is efficient, but very costly from the numerical point of view. More recently,
following Berenger [30] for electromagnetics, Hu [31] and Tam et al. [32] apply the perfectly
matched layer technique for the linearized Euler equations. This method is discussed by
Hesthaven [33]. As explained by Grinstein [24], the usefulness of the buffer approach is
restricted to isolating a region of the flow for relatively short-timed unsteady simulations,
or for simulations that are either forced or mainly focussed on the initial shear flow
dynamics. That’s why they are not reliable for all configurations.

The object of this paper is to make the artificial frontier as transparent as possible in
order to let the flow leave the computational domain without any perturbation. In particu-
lar, the vortices should not create strong reflections. So, our goal is to improve the classical
non-reflecting BC in order to significantly decrease the acoustic reflections. Instead of
setting the amplitude of the entering characteristic waves equal to zero, we propose to keep
them and discretize them as accurately as possible. As these waves come from outside the
domain, we need the values of primitive variables at fictitious points outside the domain to
write down the discretization. So, the main work is to find a way to get the best possible
values at these fictitious nodes. This is done by using a steady reference flow and a
convection reference velocity of the flow at the artificial frontier.

We first recall the compressible Navier–Stokes equations, and the characteristic wave
amplitude definition. The numerical approximation used is then made precise, and the
present BC carefully explained. Classical and representative numerical tests are performed
to show its efficiency. Finally, a direct numerical simulation on a dihedral plate is per-
formed.

2. GOVERNING EQUATIONS

The governing equations are the two-dimensional compressible Navier–Stokes equations,
given in their non-dimensionalized formulation, in an orthonormal system and with usual
notations by
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The Reynolds number of the flow, Re, is defined by
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where uc, lc and � are respectively a characteristic velocity, a characteristic length and the
viscosity of the fluid.
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As the domain is bounded, it is necessary to specify some BCs at the frontier. In this work,
three BCs are used

1. A subsonic inflow with velocity and temperature imposed

�
�
�
�
�

u=uanaly(x, y)
�=�analy(x, y)
T=T0

2. An isothermal no slip wall

�
�
�
�
�

u=0
�=0

T=T0

3. A subsonic outflow.

BC (1) and BC (2) are precisely described in Reference [19]. The density � is computed from
the continuity equation on the boundary itself, and the pressure is deduced from the state
equation. It should be noted that for the BC (1), only three conditions are used while
Strikwerda [2] claims that four conditions are needed for a two-dimensional subsonic inflow.
This feature is picked out by Poinsot and Lele [19], and is coming from the NSCBC method
used to derive this subsonic inflow BC. Thus, even if this BC is not in good agreement with
the theory, it will be used in this work because of its efficient numerical behaviour in a lot of
different configurations [19]. BC (3) is the main object of this work, and is carefully described
in the next section.

3. CHARACTERISTIC WAVES

In order to simplify the expression, let us consider a node A, located on a boundary
x=constant, whose outward normal to the boundary is n� = (1, 0)T. We reformulate the
equations at node A to derive the amplitude of the characteristic waves normal to the
boundary
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Ax is a diagonalizable matrix, thanks to the hyperbolic nature of the convective term in the
equations. Then, by noting � the diagonal matrix, and S the transformation matrix whose
columns are the Ax right eigenvectors
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This last formulation points out the characteristic waves amplitudes vector L. By noting c the
local sound speed.
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�
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we can show that [19]
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Lk is called the amplitude of the kth characteristic wave. According to the sign of the
eigenvalues, the discretization at the boundary has to be done from inside or outside the
domain as we have:


 �k�0 means that the wave is leaving the computational domain. In other words, the
information carried by the characteristic is going out of the domain.


 �k�0 means that the wave is entering the computational domain. In other words, the
information carried by the characteristic is coming from outside the domain. As a
consequence, a non-viscous physical boundary condition is needed to evaluate Lk.

4. NUMERICAL APPROXIMATION

We perform a direct numerical simulation, using a mixed finite volumes-finite elements
method, developed on an unstructured mesh with triangular cells. This section is devoted to
briefly explain its implementation for an internal node, that is to say, which is not located on
a boundary.

4.1. The con�ecti�e deri�ati�e

The convective derivative at node Al, (�Fx/�x+�Fy/�y)l, is evaluated by a vertex-based finite
volumes method associated to Roe solver. Let Cl be the control volume whose boundary �Cl

joins the middle of the cells and segments surrounding Al, and n� l be the outward normal to Cl,
we note �Clm=�Cl��Cm (Figure 1) and we have

area(Cl)
��Fx

�x
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�Fy

�y
(U)

�
l

= �
Am�K(l)

�lm(Ul, Um, nlmb )

with
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Figure 1. Control volumes Cl and Sl around Al.
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where rk is the kth right eigenvector associated with the kth eigenvalue �k of the Roe matrix
A, evaluated at the well-known Roe averaged U (see for instance Reference [34]) function of
Ul and Um
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If we note (R) the matrix whose columns are rk (1�k�4), �wk is the kth component of the
characteristic variations vector �w defined by

�w= (R)−1(Um−Ul)

In order to get the second order accuracy in space, we replace the Ul and Um variables in
�lm(Ul, Um, nlmb ) by Ul

+ and Um
− using a MUSCL method
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The gradients are evaluated as in Reference [35]. We first define

(�Ua )l ·AlAm= (�Ua )m ·AlAm=Um−Ul
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where �k is the classical linear base function associated to the node Ak in a P1 finite elements
formulation. Then
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We choose �=1/3. No flux limiter is needed, because of the smoothness of the solution we are
simulating.

4.2. The diffusi�e deri�ati�e

The diffusive derivative at node Al, (1/Re)(�Gx/�x+�Gy/�y)l, is evaluated by a classical P1

finite elements method. This is a centred process, with the second order accuracy in space. Let
Sl be the control volume made of the cells �m surrounding the node Al and � lb be the outward
normal to Sl (Figure 1), we have

1
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where ��l/�x (respectively ��l/�y) is the derivative in x (respectively y) inside �m of the base
function associated to the node Al ; Gx(U, �U) and Gy(U, �U) are constant quantities inside
�m, provided u and � are defined in �m by
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4.3. The integration in time

We denote Ul
n the solution at node Al and at time tn. In order to compute Ul

n+1, we use the
Henn method to bring second order accuracy in time. We first begin to define the full residual
at node Al and at time tn
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n)=Rl

n= (�l
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and the resolution of the ODE
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Remark
The way to proceed is justified because of the mass-lumping approximation, which can be
written

�
Am

Um
�

Sl

�l�m dS�Ul
�

Sl

�
Am

�m�l dS=Ul
�

Sl

�l dS

Moreover, as the scheme is explicit, a Courant–Friedrich–Lewy (CFL) condition needs to be
imposed [36].

5. THE PRESENT ARTIFICIAL BOUNDARY CONDITION

In order to simplify the explanation, we assume here that the mesh is an uniform Cartesian
mesh, and note Ai, j the current point on the outflow boundary � at x=constant (Figure 2).
As a consequence, the previous subscript l is replaced by the couple of subscripts (i, j ).
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Figure 2. The Ai, j point on �.


 The tangential convective derivative at node Ai, j and at time tn, (�Fy/�y)i, j
n , is computed in

the same way than inside the computational domain, but degenerates to one dimension.
Here, the estimation of (�Fy/�y)i, j

n is evaluated with a one-dimensional Roe scheme and a
MUSCL technique, and the control volume Ci, j becomes a segment on the boundary whose
middle is Ai, j.


 The diffusive residual (�i, j
V )n is computed in the same way than inside the computational

domain. More precisely, the control volume Si, j is always made of the cells surrounding
Ai, j. Moreover, a boundary term needs to be evaluated whose expression is

1
Re

�
�Si, j��

Gx(U, �)�i, j d�

Viscous boundary conditions are then imposed. Since these additional conditions must have
a negligible effect when the viscosity goes to zero, they are only used to modify the
conservation equations before to discretize them at the subsonic outflow boundary nodes
[19]. They are given by

�
�
�
�
�

�2T
�x2 =0

��xy

�x
=0

The normal convective derivative (�Fx/�x)i, j
n is completely defined by the evaluation of (L)i, j

n .


 If (�k)i, j
n �0, then the characteristic curve is leaving the computational domain. As a matter

on fact, (Lk)i, j
n is approximated from the solution inside the domain. For an outflow

subsonic boundary, this is the case for (L2)i, j
n , (L3)i, j

n and (L4)i, j
n . The discretization is then

performed with a second order scheme as
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 If (�k)i, j
n �0, then the characteristic is coming from outside the computational domain.

Now, we can not approximate (Lk)i, j
n from the solution inside the domain because it would

generated instabilities. Extrapolation methods are also inadapted. For instance, a first order
extrapolation on p and u in order to discretize (Lk)i, j

n would lead to the same gradients as
inside the domain, what is unstable. For an outflow subsonic boundary, this is the case for
(L1)i, j

n .
A first way to proceed is the non-reflecting boundary condition (NRBC) (see for instance
[19])

(L1)i, j
n =0 for a subsonic outflow

(L1)i, j
n = (L2)i, j

n = (L3)i, j
n =0 for a subsonic inflow

Nevertheless, a pressure drift can arise because the static pressure at infinity p� is not
specified to the flow. In order to avoid such a drawback, a pressure recall can be added to
obtain the partially non-reflecting boundary condition (PNRBC)

(L1)i, j
n =

�(1−M2)c i, j
n (pi, j

n −p�)
l

with

�
�
�
�
�

� : the reflection parameter
M : the maximum Mach number in the flow
c i, j

n : the local speed of sound
l : the computational domain characteristic length

The � coefficient needs to be adjusted [8]. As we shall see, for several numerical tests these
BCs do not give good results. Indeed, if the hydrodynamic disturbances are often well
evacuated, strong acoustic reflections arise.

We now propose a new method to evaluate (L1)i, j
n . Let Ai+1, j (respectively Ai+2, j) be a

fictitious node, outside the domain, symmetric to Ai−1, j (respectively Ai−2, j) with regards to
�. If Ui+1, j

n and Ui+2, j
n were available, then we would write

(L1)i, j
n = (ui, j
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n )
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Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 807–840



ARTIFICIAL BOUNDARY CONDITION FOR 2D SUBSONIC FLOWS 819

Nevertheless, the pi+2, j
n , pi+1, j

n , ui+2, j
n , and ui+1, j

n values are not known, and of course, these
exact values are unreachable. The goal of this section is to find a way to approximate them,
in order to derive a physically relevant value of (L1)i, j

n which does not produce strong acoustic
waves. This has already been done successfully by Bruneau and Fabrie [37,38] for incompress-
ible flows using a Neumann type BC and a reference flow.

1. We first determine a global reference steady state V� , in the neighbourhood of �

V� =

�
�
�
�
�

�̄

ū
�̄

p̄

�
�
�
�
�

V� depends on the flow under consideration, and can be obtained either analytically or
numerically.

2. Then, (V �)n is defined in the computational domain as a perturbation of V�

(V �)n=Vn−V�

and we write

(L1)i, j
n = (ui, j

n −c i, j
n )
�− p̄ i+2, j

n +4p̄1+1, j
n −3p̄ ij

n

2�x
−� i, j

n c i, j
n − ū i+2, j

n +4ū1+1, j
n −3ūij

2�x
�

+(ui, j
n −c i, j

n )
�− (p �)i+2, j

n +4(p �)i+1, j
n −3(p �)i, j

n

2�x

−� i, j
n c i, j

n − (u �)i+2, j
n +4(u �)i+2, j

n −3(u �)i, j
n

2�x
�

= (L1)i, j
n + (L �1)i, j

n

(L1)i, j
n is easily computed with the knowledge of V� .

3. We assume that the perturbations around V� at node Ai, j are convected with a convection
velocity uconv, which depends on the flow under consideration as we shall see later. Mainly,
this convection velocity is the mean flow velocity. Then, we make the approximation

(L �1)i, j
n � (ui, j

n −c i, j
n )
�−(p �)i, j

n−2	+4(p �)i, j
n−	−3(p �)i, j

n

2�x
−� i, j

n c i, j
n −(u �)i, j

n−2	+4(u �)i, j
n−	−3(u �)i, j

n

2�x
�

with tn−	= tn–	�t and 	=�x/uconv�t. Since V� is a steady state, we have

(L �1)i, j
n � (ui, j

n −c i, j
n )
�− (p)i, j

n−2	+4(p)i, j
n−	−3(p)i, j

n

2�x
−� i, j

n c i, j
n − (u)i, j

n−2	+4(u)i, j
n−	−3(u)i, j

n

2�x
�
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The methodology presented above can easily be adapted to other approximations following the
same way to give values of the necessary quantities at the fictitious nodes. We point out to the
reader that uconv cannot be equal to zero.

Remark
The present boundary condition (PBC) can be used for a local subsonic inflow. In this
particular case, ui, j

n �0, and (L2)i, j
n and (L3)i, j

n have also to be specified and can not be
approximated from the solution inside the domain. In fact, the way to proceed is exactly the
same than for (L1)i, j

n , and we would have

(L2)i, j
n = (L2)i, j

n + (L �2)i, j
n

(L3)i, j
n = (L3)i, j

n + (L �3)i, j
n

6. CLASSICAL NUMERICAL TESTS

6.1. The non-�iscous �ortex lea�ing the computational domain

A first relevant test is the non-viscous vortex leaving the computational domain. An inviscid
vortex is superimposed on a simple uniform translation flow. The vortex is defined by its
centre, and the two velocity components ur and u
, expressed in the co-ordinates by

�
�
�
�
�

ur=0

u
=
2r
a2 �0 e−r2/a2

with

�
�
�
�
�
�
�

ur : the radial velocity

u
 : the tangential velocity

r : the distance to the centre

a : the vortex radius

�0: the vortex amplitude

In order to entirely define the initialization field, the pressure and the density have to be
consistent with the velocity. Indeed, imposing a constant pressure would not be satisfying,
because acoustic waves would leave the vortex core. In order to do it, pressure and density
fields are defined by the following system, which has to be integrated

�
�
�
�
�

�
u


2

r
=

�p
�r

p
��

=
p�

��
�

A very similar test is presented in several recent papers. Poinsot and Lele [19] first, with a
weakly supersonic main flow and a relative maximum velocity in the vortex of 0.18 per cent
of the main flow convective velocity. Then, with a subsonic flow in Colonius et al. [23], who
define a reflection coefficient by

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 807–840



ARTIFICIAL BOUNDARY CONDITION FOR 2D SUBSONIC FLOWS 821

Cr(t)=
��div(t)���

���0���

where ��div(t)��� is the L� norm of the divergence field at time t and ���0��� is the L� norm of
the initial vorticity field. Finally, two initializations are presented by Nicoud [22] in a subsonic
context. The former with a relative maximum velocity in the vortex in the order of 1 per cent
of the main flow velocity, the latter with a relative maximum velocity in the vortex in the order
of 90 per cent of the main flow velocity. He compares the results obtained with a reference
solution, deduced either by the analytical resolution of the equations when the amplitude is
weak and allows the linearization, or by the same simulation on a longer domain to avoid
interaction between the vortex and the outflow boundary. We chose here to present our results
like Nicoud did.

The computational domain is a square of side l=1. The mesh contains 101 nodes in each
direction of space, and is made of 20000 triangular cells. The vortex is initially located at the
centre of the domain, and on the (a), (b) and (c) boundaries (Figure 3), the NRBC is imposed.
The vortex radius is a=0.075	2, and the Mach number is M=0.2. The main flow convection
velocity is u�=1. The simulation is performed up to t=1.5. The PBC and the NRBC are
successively applied on the boundary (d). The two solutions are compared to a reference
solution (RS) obtained by a simulation on a longer domain, to avoid the vortex interacting
with the outflow boundary. The first vortex amplitude, �1= −0.1105, leads to a strong vortex
V1, with a relative maximum velocity in the vortex in the order of 90 per cent of the main flow
velocity. During the evolution, the boundary (d) is an outflow subsonic boundary. The second
one, �2= −0.2210, leads to a very strong vortex V2, with a relative maximum velocity in the
vortex in the order of 180 per cent of the main flow velocity. As a consequence, the global
horizontal velocity can become negative during the evolution, and the boundary (d) will have
sometimes to treat local inflows.

The reference flow chosen to apply the PBC is here very simple, as it is taken as equal to
the flow at infinity

Figure 3. Computational domain.
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V� = [��, u�, 0, p�]T,
�V�
�x

= [0, 0, 0, 0]T

The reference convection velocity uconv is the velocity at infinity

uconv=u�

as the vortex is convected at this velocity. Whatever the vortex amplitude is, we can see that
the vorticity is well evacuated from the computational domain even if the PBC solution is
closer to the RS solution than the NRBC solution (Figure 4). However, the NRBC gives rise
to a reflection coefficient of the order of 2 per cent, whereas the PBC induces a reflection
coefficient in the same order as the one obtained with the RS, namely 0.05 per cent (Figure 5).
We point out to the reader that on these two figures there is a logarithmic vertical scale. This
value is due to the numerical discretization, and can be considered as the smallest reflection
coefficient we can get. Finally, qualitatively speaking, at time t=0.5, when the vortex centre
is exactly on the outflow boundary, the vorticity field is a bit perturbed and the pressure field
strongly altered by the NRBC, whereas the PBC gives a pressure field nearly identical to
the RS. This phenomenon occurs for both vortices V1 and for V2, and is displayed for V1 in
Figure 6.

Remark
If we take a weak vortex with for instance �0= −0.005, then the NRBC provides results as
good as the PBC as far as the vorticity field is concerned. Nevertheless, the acoustic field is
also altered, like for stronger vortices.

6.2. Poiseuille flow

A second relevant flow is Poiseuille flow. It is a steady viscous flow that allows one to test the
PBC efficiency in such a configuration. The computational domain is a rectangle, with length
L=10 and half height l=1 (Figure 7). The mesh contains 101 nodes in the horizontal
direction and 21 in the vertical direction, it is then made of 4000 triangular cells. The Mach
number is M=0.1, and the Reynolds number is Re=15.

(a) is a subsonic inflow boundary, with velocity and temperature imposed

u(0, y)=u0



1, 0−
�y

l
�2n

; �(0, y)=0, T(0, y)=T0

(b) and (c) are isothermal no-slip walls

u(x, y)=0, �(x, y)=0, T(x, y)=T0

The initialization is

�(x, y)=�0, u(x, y)=0, �(x, y)=0, p(x, y)=p0
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Figure 4. Vorticity evacuation. Comparison of the NRBC solution (- ·- ·-) and the PBC solution (- - -) to
the RS (plain line).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 36: 807–840



C. H. BRUNEAU AND E. CREUSÉ824

Figure 5. Reflection coefficients. Comparison of the NRBC solution (- ·- ·-) and the PBC solution (- - -)
to the RS (plain line).

When the pressure difference between the inflow boundary and the outflow boundary is
sufficiently small compared to the averaged pressure in the flow, the incompressible model can
be considered as a good approximation of the compressible model, so an analytical solution
can be deduced to compare our results with. This is the case in our configurations, and when
the steady state is reached, the analytical solution is given by

uanaly(x, y)=u0



1, 0−
�y

l
�2n

, �analy(x, y)=0,
��p

�x
�

analy

= −
8�0u0

2

3 Re l

The PBC is tested on (d), and compared to the NRBC and the PNRBC with �=0.5. The
reference flow chosen to apply the PBC is here defined by

(V� )i, j= [�0, (uanaly)i, j, 0, p0]T,
��V�

�x
�

i, j

=



0, 0, 0,
��p

�x
�

analy

nT

The convection velocity uconv is taken equal to the average value of the velocity profile imposed
on the inflow boundary

uconv=
2u0

3

The mass flux evolution through the outflow boundary as a function of the time is first
analysed, in order to underline the convergence. In fact, the NRBC and the PBC prevent the
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Figure 6. V1 vortex convection, vorticity and pressure fields. Comparison of the NRBC solution
(middle) and the PBC solution (right) to RS (left).

Figure 7. Poiseuille flow.

solution from converging towards a steady state. The static pressure, carried by the entering
characteristic, cannot be specified to the flow, and pressure drift arises. Nevertheless, this
pressure drift is far slower for the PBC than for the NRBC. Indeed, the line slope relative to
the PBC is in the order 60 times less than the line slope relative to the NBRC. On the other
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hand, the PNRBC allows the convergence. We then introduce the NRBC-b (respectively
PBC-b) which is similar to the NRBC (respectively PBC), but implemented in a modified way:
the density and the pressure are strongly specified at nodes I and J, so that the convergence
is ensured because the static pressure is specified. As we can see (Figure 8), the velocity
convergence towards the steady state is faster for the PBC-b than for the NRBC-b. Finally, the
results are compared between the NRBC, the NRBC-b, and the PBC-b when the steady state
is reached. The horizontal velocity profiles are well evaluated, whatever the BC is (Figure 9(a)).
The longitudinal pressure gradient is always satisfactory, but the PBC-b provides a pressure
value at the end of the computation domain closer to the pressure value crudely imposed in
nodes I and J than the PNRBC and the NRBC-b (Figure 9(b)), which is a more physical
behaviour since the pressure must be independent of y.

6.3. The boundary layer

The third flow we want to simulate is a boundary layer evolution on a flat plate (Figure 10).
The leading edge is located in O, and the computational domain is represented by the

dashed line. For each point inside it, the reduced distance is defined as

Figure 8. Mass flux through the outflow boundary.
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Figure 9. Steady state reached. Comparisons between the PNRBC solution ( · · · · ·), the NRBC-b solution
(- ·- ·-), and the PBC-b solution (- - -), to the exact solution (plain).

Figure 10. Boundary layer.

�=
y

x+x0

	Rx+x 0

with

Rx+x 0
=

u�(x+x0)
�

where � is the cinematic viscosity of fluid, and u� the horizontal component of the velocity
very far from the plate. The theoretical velocity field can then also be deduced, thanks to the
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resolution of the Blasius equations for incompressible flows. So we can take as a first
approximation for a laminar evolution

�
�
�
�
�
�
�

�=��

u=u�uanaly(�)

�=
u�

	Rx+x 0

�analy(�)

p=p�

with

�
�
�
�
�

uanaly(�)= f �(�)

�analy(�)=
1
2

(�f �(�)− f(�))

where f and f ’ are tabulated functions of � [39].
At abscissa x+x0, the thickness of the boundary layer is approximated by

�x+x 0
�

5	x+x0	�

	u�

A characteristic Reynolds number of the flow can be defined as

Re�=
�u�

�

The parameters used in the simulation are: x0=5.56�, that is to say Re�=139, L=50�/3 and
h=10�/3. The mesh is uniform with 61 nodes vertically and 51 nodes horizontally.

The (a) boundary is subsonic inflow with velocity and temperature imposed

u(0, y)=u�uanaly(0,y), �(0, y)=
u�

	Rx 0

�analy(�) T(0, y)=T0

The (b) boundary is an isothermal no-slip wall

u(x, 0)=0 �(x, 0)=0 T(x, 0)=T0

The (c) boundary is a PNRBC with �=0.5.
The reference flow chosen for the PBC is
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�
�
�
�
�
�
�

�̄=��

ū=u�uanaly(�)

�̄=
u�

	Rx 0+L

�analy(�)

p̄=p�

,

�
�
�
�
�
�
�
�
�
�
�
�
�

��̄

�x
=0

�ū
�x

=
−u�y	RL+x 0

2(L+x0)2 f �(�)

��̄

�x
=

−u�

4(L+x0)
� 1

	RL+x 0

(�f �(�)− f(�))+
�f �(�)y
(L+x0)

�
�p̄
�x

=0

The convection velocity uconv is equal to the velocity very far from the plate

uconv=u�

The PBC is tested on the (d) boundary and compared to the NRBC. The initialization is given
by

�=��, u=�=0, p=p�

The solution is analysed when the steady state is reached, for which unum and �num are defined
by

�
�
�
�
�

unum=
u

u�

�num=
�	Rx+x 0

u�

For each BC, �= f(unum) and �= f(�num) are respectively compared to �= f(�analy) and
�= f(�analy), at the middle transverse section x=25�/3, and at the outflow transverse section
x=50�/3 (Figure 11).

As we can see, the PBC provides far better results than the NRBC, especially for the vertical
velocity profile. The PNRBC can give better results than the NRBC if the � coefficient is well
adjusted.

6.4. Poiseuille flow with a sound source

Up to now, the PBC has been applied for vortex dominated flows, or for the computation and
analysis of steady state solutions. Even if it is not the topic of this paper, it is interesting to perform
a numerical experiment involving a problem dominated by sound waves, to show the PBC
behaviour for such an aeroacoustic test.

We so consider the established Poiseuille flow on the computational domain defined by a
rectangle with length L=1 and half height l=1. The mesh contains 101 nodes in the horizontal
direction and 201 in the vertical one; it is then made of 40000 triangular cells. The Mach number
is M=0.1 and the Reynolds number is Re=15. At time t=0, an acoustic perturbation is
superimposed in the flow, by replacing the pressure and density values p and � in all the
computational domain by p � and � �defined as:
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Figure 11. Boundary layer. Comparison of the NRBC solution (- ·- ·-) and the PBC solution (- - -) to the
Blasius solution (plain line).
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�
�
�
�
�

� �=�+ e− ((x−x0)2+ (y−y0)2)/a2

p �=
� � �

��

��

p�

�� and p� are respectively the static density and the static pressure at infinity. The parameters
used in the simulation are =0.2, x0=0.8, y0=1.0 and a=0.05.

Then, we compare the temporal evolution of the pressure perturbation when the NRBC is
used and when the PBC is used, to a reference solution obtained on a longer computational
domain to avoid any interaction with the outflow boundary. There is no need to strongly
impose the pressure and the density somewhere in the flow like we did in section ‘The
Poiseuille flow’, because of the shortness of the simulation which prevents any pressure drift
in the flow. Moreover, such an initialization provides perturbations on the inflow and
horizontal boundaries. Nevertheless, the results are analysed in the window {(x, y); 0.6�x�1
and 0.6�y�1.4}, so that these perturbations don’t have enough time to contaminate the flow
in the window.

As we can see for this strong acoustic test case (Figure 12), none of the two BCs gives the
same isolines as the RS at time t=0.04. Nevertheless, the isolines distribution seems better for
the PBC than for the NRBC. If we now take uconv=2u0/3(1+ (1/M)) which is closer to the
theoretical velocity of the acoustic wave than the previous uconv, the results are improved. All
these observations are confirmed by the comparison of the longitudinal pressure evolution
along the axis y=1 at time t=0.04 (Figure 13). Indeed, the concavity of the profiles are
respected by the PBC, and the PBC with uconv=2u0/3(1+ (1/M)) gives clearly the closest
profile to the reference one. Finally, we conclude that the PBC gives better results than the
NRBC on this test. The closer uconv is to the velocity of the phenomena inside the computa-
tional domain, the better the results are. Thus, it appears that even if the results are less good
than for the purely hydrodynamic test cases above, the PBC can be applied successfully to
some aeroacoustic test cases.

7. NUMERICAL SIMULATION ON A PLAN DIHEDRAL

7.1. Presentation

The computational domain is displayed on Figure 14. Like for the boundary layer test, � is the
height of the boundary layer at point A on the inflow boundary (a), and �200 its value for
Re�=200. The leading edge � is located at x0=8�200 in front of A. We get 	=100. (b) is a
wall, and (c) and (d) are artificial boundaries. The m and n parameters will be fixed later, and
allow one to give the dimensions of the computational domain. � is deduced from Re� with the
relation

�=
2000
Re�

�200
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Figure 12. Pressure isolines evolution for the acoustic perturbation. Comparison of the NRBC solution
(middle) and the PBC solution (bottom) to the RS (top).
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Figure 13. Longitudinal pressure evolution along y=1 at time t=0.04. Comparison of the NRBC
solution (- ·- ·-), the PBC solution with uconv=2u0/3 (- - -) and the PBC solution with uconv=2u0/3(1+

(1/M)) ( · · · · ·) to the reference solution (plain line).

Figure 14. Dihedral plate configuration.

The non-dimensionalized variables are obtained by choosing lc=�200 and uc=u�, so that
the numerical Reynolds number used for the equations is Re= lcuc/�=Re�

2/200. The (a)
boundary is a subsonic inflow with velocity and temperature imposed, similarly to the
boundary layer test. The (b) boundary is an isothermal no-slip wall. On the (c) boundary, the
PNRBC is applied: (L1)i, j

n =0.1(pi, j
n −p�).

The mesh is a structured non-uniform one. Geometrical progressions are used in order to
refine it in the boundary layer and around B, the point of discontinuity on the wall, both
vertically and horizontally as shown in Figure 15. It should be noted that for the higher
Reynolds number involved in the following simulations, 11 nodes are still present in the
boundary layer’s height to ensure a sufficiently accurate spatial resolution.
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Figure 15. Mesh of the computational domain around point B.

7.2. The reference solution

We take here Re�=50, m=101 and n=72. In order to obtain a solution of the equations,
a buffer zone adjacent to the computational domain in used. Inside this buffer, the mesh is
stretched in the horizontal direction [23], and the solution progressively brought back to a
Blasius flow along the dihedral [29], which can be considered as a local solution. Conse-
quently, no BC is needed on the (d) boundary. The simulation converges towards a steady
state, which is denoted as V50. No recirculation area, defined by a zone in which horizontal
velocities are negative, is noticed. Horizontal velocity and pressure isolines are displayed
above the plan dihedral (Figure 16). The solution remains the same if we take m=150
instead of m=101, and also if the buffer zone size is twice as long. For higher Reynolds
numbers, we can take smaller values of m as the boundary layer becomes thinner.

Figure 16. Re�=50, use of a buffer zone.
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7.3. The present BC

The buffer zone is then removed. The initialization is made with V50, and two simulations are
performed at Re�=50. The former with the NRBC on (d), the latter with the PBC on (d) using
V� =V50. Here, uconv is equal to the horizontal velocity very far from the dihedral

uconv=1

At the beginning of the simulation, the NRBC gives rise to a small modification of the
horizontal velocity isolines distribution, and provides strong acoustic reflections coming from
the outflow boundary, which can be seen on the pressure field, whereas the PBC does not
(Figure 17).

Figure 17. Re�=50, comparison between the NRBC (top) and the PBC (bottom). Beginning of the
simulation.

Figure 18. Re�=50, NRBC. Steady state reached.
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During the simulation, the PBC does not change the solution. After a long time of
simulation, the NRBC converges towards a steady solution, but with a recirculation area, and
with the horizontal velocity isolines perpendicular to the outflow boundary (Figure 18), what
is an unphysical behaviour.

Figure 19. Re�=100. Beginning of the simulation.

Figure 20. Re�=100, established regime. Temporal evolution of the Jeong and Hussain criterion at the
given point in the flow. Comparison of the NRBC solution (plotted line) to the PBC solution (plain line).
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From the solution obtained with the PBC at Re�=50, we go on simulating the flow at
Re�=100, using V� =V50 for the PBC implementation. At the beginning of the simulation, no
perturbation is detected on the outflow boundary and vortex dropping arises at point B. It
corresponds to a transition regime, because of the change of Re�. The vortex is then convected,
and leaves the computational domain. In order to illustrate this behaviour, the Jeong the
Hussain criterion [40] as well as the pressure isolines are plotted at two different times (Figure
19). After a long time of simulation, an established regime can be analysed. The PBC provides
a steady solution with a recirculation zone like that obtained with the use of the buffer zone
at the same Re�. On the other hand, the NRBC provides an unsteady periodic solution (Figure
20), whose fundamental frequency depends on the n parameter, as proved by Hernandez in a
similar configuration [25].

A last simulation is then performed at Re�=400, using V� =V100 computed above for the
PBC implementation. Whatever the type of the BC used, the solution is unsteady, like that
obtained with the buffer zone at the same Re�. We plot the pressure evolution in the domain
as a function of the time at a given point in the flow (Figure 21). We can observe that the

Figure 21. Re�=400. Temporal evolution of the pressure at a given point in the flow (top) and energy
spectra of the signals (bottom). Comparison of the NRBC solution (middle) and the PBC solution (right)

to the buffer solution (left).
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signal corresponding to the PBC is far closer to the signal obtained with the buffer zone than
the signal corresponding to the NRBC. Moreover, the energy spectra of the signals show the
presence of a low frequency for the NRBC solution, which is not present for the PBC solution
and for the solution obtained with the buffer zone. This low frequency is already present at
Re�=100, and corresponds to the travel of acoustic waves from the artificial boundary back
to the corner. Finally, the pressure field obtained after a simulation time equal to 600 is
displayed in Figure 22. We see clearly that the PBC provides about the same solution despite

Figure 22. Re�=400, pressure field at time t=600. Comparison of the NRBC solution (middle) and the
PBC solution (bottom) to the buffer solution (top).
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a small delay than the solution obtained with the buffer zone. But the computation of the
solution with the buffer zone requires roughly 50 per cent more cpu time.

8. CONCLUSION

For subsonic compressible flows, especially when vortices cross the artificial frontiers of the
computational domain, it is not relevant to cancel the amplitude of the entering characteristic
waves. So, in this work the aim is to preserve these amplitudes in a stable way, which cannot
be done for instance by a simple extrapolation procedure. In order to do it, a reference flow
as well as a convection velocity are used to take into account the flow behaviour outside of the
domain of the simulation. The results show the efficiency of this strategy as the computed
flows in various configurations do not exhibit unphysical phenomena due to the presence of an
artificial boundary.
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